Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization.
نویسندگان
چکیده
Mitochondrial complex I (CI) deficiency is associated with multiple neurological and metabolic disorders. However, its effect on innate immunity and bone remodeling is unclear. Using deletion of the essential CI subunit Ndufs4 as a model for mitochondrial dysfunction, we report that mitochondria suppress macrophage activation and inflammation while promoting osteoclast differentiation and bone resorption via both cell-autonomous and systemic regulation. Global Ndufs4 deletion causes systemic inflammation and osteopetrosis. Hematopoietic Ndufs4 deletion causes an intrinsic lineage shift from osteoclast to macrophage. Liver Ndufs4 deletion causes a metabolic shift from fatty acid oxidation to glycolysis, accumulating fatty acids and lactate (FA/LAC) in the circulation. FA/LAC further activates Ndufs4(-/-) macrophages via reactive oxygen species induction and diminishes osteoclast lineage commitment in Ndufs4(-/-) progenitors; both inflammation and osteopetrosis in Ndufs4(-/-) mice are attenuated by TLR4/2 deletion. Together, these findings reveal mitochondrial CI as a critical rheostat of innate immunity and skeletal homeostasis.
منابع مشابه
2-(Trimethylammonium) Ethyl (R)-3-Methoxy-3-oxo-2-Stearamidopropyl Phosphate Suppresses Osteoclast Maturation and Bone Resorption by Targeting Macrophage-Colony Stimulating Factor Signaling
2-(Trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient megakaryopoiesis. Here, we show that (R)-TEMOSPho blocks osteoclast maturation from progenitor cells of hematopoietic origin, as well as blocking the resorptive function of mature osteoclasts. The in...
متن کاملThe Src family kinase, Lyn, suppresses osteoclastogenesis in vitro and in vivo.
c-Src kinase is a rate-limiting activator of osteoclast (OC) function and Src inhibitors are therefore candidate antiosteoporosis drugs. By affecting alphavbeta3 and macrophage-colony stimulating factor (M-CSF)-induced signaling, c-Src is central to osteoclast activity, but not differentiation. We find Lyn, another member of Src family kinases (SFK) is, in contrast, a negative regulator of oste...
متن کاملAmlexanox Suppresses Osteoclastogenesis and Prevents Ovariectomy-Induced Bone Loss
The activity of protein kinases IKK-ε and TANK-binding kinase 1 (TBK1) has been shown to be associated with inflammatory diseases. As an inhibitor of IKK-ε and TBK1, amlexanox is an anti-inflammatory, anti-allergic, immunomodulator and used for treatment of ulcer, allergic rhinitis and asthma in clinic. We hypothesized that amlexanox may be used for treatment of osteoclast-related diseases whic...
متن کاملHypoxic regulation of osteoclast differentiation and bone resorption activity
Bone integrity is maintained throughout life via the homeostatic actions of bone cells, namely, osteoclasts, which resorb bone, and osteoblasts, which produce bone. Disruption of this balance in favor of osteoclast activation results in pathological bone loss, which occurs in conditions including osteoporosis, rheumatoid arthritis, primary bone cancer, and cancer metastasis to bone. Hypoxia als...
متن کاملRIP140 in monocytes/macrophages regulates osteoclast differentiation and bone homeostasis.
Osteolytic bone diseases, such as osteoporosis, are characterized by diminished bone quality and increased fracture risk. The therapeutic challenge remains to maintain bone homeostasis with a balance between osteoclast-mediated resorption and osteoblast-mediated formation. Osteoclasts are formed by the fusion of monocyte/macrophage-derived precursors. Here we report, to our knowledge for the fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell metabolism
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2014